skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bogachev, Nikolay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we study crystallographic sphere packings and Kleinian sphere packings, introduced first by Kontorovich and Nakamura in 2017 and then studied further by Kapovich and Kontorovich in 2021. In particular, we solve the problem of existence of crystallographic sphere packings in certain higher dimensions posed by Kontorovich and Nakamura. In addition, we present a geometric doubling procedure allowing to obtain sphere packings from some Coxeter polyhedra without isolated roots, and study “properly integral” packings (that is, ones which are integral but not superintegral). Our techniques rely extensively on computations with Lorentzian quadratic forms, their orthogonal groups, and associated higher–dimensional hyperbolic polyhedra. 
    more » « less